mocet ess

in #sbs6 years ago

B.-6 C.9 D.12 E.15

  1. log_3⁡5× log_25⁡27=………….
    A.3/2 B.2/3 C.5/27 D.3/25 E. 5×27
    10.If x=log_b⁡a,y=log_c⁡b,z=log_a⁡c, then xyz=…………
    A. 0 B. 1 C.-1 D. abc E. a+b+c
  2. If log⁡2=a, then =…….
    A.a^2 B.2.5a C.1+a D.1-a E.1/2 a
    12.If log⁡2=a, log⁡3=b, then log⁡144=………….
    A. a^4 b^2 B.4a+2b C.8ab D. a^2 b^2 E. None of them
  3. 3+log_2⁡5=……..
    A.log_2⁡40 B.log_2⁡4 C.log_2⁡150 D. log_2⁡15 E.log_2⁡60
  4. log⁡0.01=………
    A. 2 B. -2 C.1/2 D.-1/2 E.0
  5. log_2⁡40+log_2⁡0.1+log_2⁡0.25=……….
    A. 0 B. 1 C.2 D. 3 E.4
  6. log_2⁡〖2√2〗=………
    A. 2/3 B.1 C.1 1/2 D.-3/2 E.-2/3
  7. log_(x-2)⁡(2x^2-10x+13) = 1; x=?
    A.-3 B.-5/2 C. 5/2 D. 2/5 E. 3 or5/2
  8. If log⁡2=m , then log_8⁡5 =………
    A. (1-m)/3m B.1/3m C. (3-m)/m D. (1-m)^3 E.(3-m)/m
    19.Solve log⁡x×log⁡(12x+7) =1
    A. 1/3 (or) -2/3 B. 2/5 (or) 2/3 C.-5/4 D.2/3 E. 2/3 ( or) -5/4

20.If log_10⁡x<0 , then
A. x<0 B.-1<x<0 C. -1<x<1 D. 0<x<1 E. x>1

  1. If log_10⁡x=0.35, then log_10⁡√x=……….
    A. -1.75 B.-0.175 C. 0.175 D. 3.5 E. 0.7
    the central angle of a circle of radius 14 cm cuts off an arc of length 28 cm , then the radian
    measure of the angle is
    A. 2√2 B.2 C.1 D. 4 E. 8π
  2. The pendulum on a clock swings through an angle of 2 radians, and the tip sweeps out and
    arc of 6 inches. Then the length of the pendulum is
    A. 3 inches B. 12 inches C. 24 inches D. 12/π inches E. 24/π inches
  3. The area of a sector of a circle is 143 cm2and the length of the arc of the sector is 11 cm .
    Then the radius , in cm, of the circle is
    A. 11 B.13/2 C.26 D. 13 E. None of these