Искусственный человек на чипе изменит фармацевтику
Гомункул — существо из пробирки, искусственный человек, мечта и несбыточная цель средневековых алхимиков. Но если ученые прошлого имели скорее эгоистичные цели — стать ближе к Творцу и познать некую «истину» жизни, сейчас подход более чем гуманистический.
Вы когда-нибудь задумывались о технологии производства фармацевтических препаратов? От разработки до внедрения лекарства проходят долгий путь — от химической формулы до успешного маркетингового проекта. Но самый сложный и этически спорный момент — это тестирование на животных и дальнейшие испытания на людях. Для тестов обычно используют мышей, ибо их геном весьма близок к человеческому, но все же некоторые специфические реакции проследить не удается.
Существует более 200 факторов совместимости групп крови, примерно столько же веществ-мишеней для лекарств, отвечающих за иммунитет, и множество других уникальных особенностей. Что же случится, если производитель не сможет учесть хотя бы один фактор, не говоря уже об индивидуальных чертах организма? Подобные невольные ошибки приводят к множеству потерянных жизней (за десять лет погибло 1000 испытателей) и к огромным финансовым затратам фармацевтических компаний на вывод препарата из производства, а также судебные иски и восстановление репутации. Разумеется, все эти затраты ложатся на плечи потребителей.
В качестве альтернативы испытаниям на животных в последние годы стала активно применяться технология тестирования на отдельных клеточных культурах. Однако, хотя эта методика снимает этическую проблему, она не дает системного подхода к исследованиям. Ведь препарат, призванный, например, лечить печень, может пагубно сказываться на желудке и почках или даже вызывать смертельно опасную реакцию иммунной системы. Выход из патовой ситуации ученые ищут на стыке биологии и высоких технологий.
Дорога в Россию
«Популярная механика» побывала в лаборатории московского научно-технического центра «БиоКлиникум», где с 2008 года ведется уникальный проект создания «искусственного человека» Homunculus под руководством члена-корреспондента РАН Александра Тоневицкого. Идея проста и от этого еще более гениальна: разместить на пластине площадью с кредитную карточку клетки человека и объединить их системой «сосудов» в подобие живого организма.
Идея такого биореактора зародилась сравнительно недавно: в 2007 году появились первые работы немецких ученых во главе с Уве Марксом, в которых высказана идея расположить рядом клетки нескольких типов, чтобы смоделировать их взаимодействие. С тех пор множество лабораторий по всему миру начали по-своему решать эту проблему, однако большинству специалистов удалось создать лишь узкоспециализированные системы. В лаборатории Кае Сато с факультета прикладной биохимии Токийского университета (Япония) изучается взаимодействие раковых клеток опухолей с другими тканями, Дональд Имбер (Институт Вайса, США) создает филигранную модель «легкого на чипе», способную к сокращениям и естественному газообмену.
Идея создания отдельных макетов быстро перерастает в концепцию полноценной живой модели человека, и Уве Маркс с командой ученых из лаборатории TissUse обращается к своему бывшему научному руководителю Александру Тоневицкому, руководителю НТЦ «БиоКлиникум». Так началась история российского проекта «Человек на чипе», который на данный момент располагает единственными в мире рабочими образцами системы.
Технология объединяет в себе достижения самых разных наук, в НТЦ работают микробиологи, химики, физики, программисты и инженеры. «Здесь у нас есть все необходимое: стерильные ПЦР-боксы, печь с плазмой низкого давления, мастерская, оснащенная новейшими инструментами, в том числе 3D-принтером, лазерным гравером и станками с компьютерным управлением», — не без гордости рассказывает наш гид Дмитрий Сахаров, директор проекта Homunculus. В таких условиях группа талантливых молодых ученых создает будущее медицины — маленьких «человечков» на стекле и пластике, которые призваны спасать множество жизней.
Плоть и кровь
Платформа Homunculus состоит из клеточного чипа и блока управления, который отслеживает ход эксперимента и поддерживает жизнь маленького человечка. На чипе размещаются культуры клеток, в первую очередь те, через которые тестируемое вещество будет попадать в организм, а также те, на которые оно должно воздействовать
«Кровь» искусственного человека — питательный раствор, снабжающий клетки всеми необходимыми для жизни соединениями. Через него же вводят тестируемое вещество. Раствор содержит набор солей, поддерживающих постоянную кислотность среды, поскольку клетки выделяют в раствор свои щелочные метаболиты. Также в нем содержится питательный бульон, причем «рацион» четко соблюден — присутствует необходимое количество белков, жиров и доступных сахаров. Состав раствора очень близок к составу плазмы крови, а вот аналогов эритроцитов с гемоглобином там нет — кислород поступает в систему растворенным в жидкости.
Клеточные культуры располагаются в трансвелах — специальных ячейках с полупроницаемой мембраной снизу, сквозь которую клетки обмениваются веществами с питательной средой и друг с другом. Возможно, когда-нибудь ученые смогут разместить на платформе и привести во взаимодействие все (или почти все) виды клеток, содержащихся в человеческом организме. Однако, пока количество клеточных ячеек на чипе не превышает шести, разработчики стремятся сосредоточиться на органах, которые непосредственно соприкасаются с тестируемым лекарством, участвуют в его передаче и выделении.
К примеру, если речь идет о таблетках, действующее вещество помещается в ячейку с клетками кишечника, всасывается ими и через мембрану попадает в питательную среду. Наружные средства вводятся через клетки кожи, а внутривенные — непосредственно в раствор. Непременно тестируются печень и почки, участвующие в метаболизме и выведении препарата. Вниманием не обделены сердце и мозг, особенно чувствительные к токсичным препаратам. Перечень доступных клеток можно расширять постоянно — главное, что в рамках теста клеточные культуры функционируют и взаимодействуют максимально правдоподобным образом.
Тест длится около 28 дней, после чего специалисты приступают к обработке результатов. Самый явный показатель — количество живых клеток к концу эксперимента, но наиболее точные результаты дают микробиологические и генетические исследования РНК и ДНК. Это позволяет определить отсроченную токсичность препарата в том случае, когда он не убивает клетку мгновенно, но вызывает мутации в геноме и нарушения метаболизма. Последствия такого отравления могут быть заметны только спустя несколько лет, и стандартные методы лабораторных испытаний не дают их зафиксировать.
К моменту начала работы особо важным для исследователей был вопрос, какие клетки использовать для культивирования? Эмбриональные? Клетки живых людей? Или что-то иное? Ответ был найден неожиданный — ученые используют раковые линии клеток, полученные из мировых клеточных банков. При чем тут онкология? Раковые клетки дольше живут, лучше растут, а самое главное, они стандартны, широко доступны и детально описаны в многочисленных публикациях, при этом их функции точно такие же, как у здоровых.
Как люди делают людей
Сердце биореактора — чип с ячейками для клеток — представляет собой сэндвич из поликарбоната, полидиметилсилоксана (ПДМС) и стекла, соединенных весьма неочевидными высокотехнологичными способами.
Эволюция киборга
Несмотря на кажущуюся завершенность и самостоятельность, миниатюрный человечек не может сам дышать или гонять по своим «венам» питательную жидкость. Для этого необходим блок управления — электронный мозг, сердце и легкие «гомункула». Прибор содержит микронасосы, обеспечивающие циркуляцию питательной среды, и вакуумное управление клапанами, установленными в силиконовой прослойке чипа. Кроме того, он подает в систему углекислый газ и кислород, а также поддерживает постоянную температуру чипа.
Все параметры могут регулироваться в соответствии с задачами эксперимента. Прибор имеет встроенный сенсорный дисплей и подключается к компьютеру по USB или LAN, а интерфейс программного обеспечения сделан так, чтобы врачи и исследователи из других лабораторий могли легко и быстро овладеть всеми функциями. В общем, это не прибор, созданный для конкретной задачи, а многофункциональная платформа, готовая к выпуску на рынок.
Блок управления, как и чип, — детище центра. «Все используемые компоненты давно известны инженерам во всем мире, но их правильное совмещение и калибровка делают разработку уникальной и инновационной», — говорит Дмитрий Сахаров. Вначале все детали прибора изготавливали вручную, включая печать плат и сборку корпусов, но, когда начались продажи, основные компоненты стали заказывать сборочному предприятию в Санкт-Петербурге, откуда прибор приходит в виде конструктора.
««Человек на чипе» — это лишь первый шаг к цели, но технологии стремительно развиваются, и уже в ближайшее время будет создана более совершенная модель», — делится своим видением академик Тоневицкий. В ближайших планах лаборатории создание чипа, на котором можно разместить десять и более культур клеток одновременно, а не шесть, как сейчас. Так же важно сделать клеточные модели наиболее близкими к реальным структурам в организме человека. Ведь не надо забывать, что сейчас мы имеем дело всего лишь с несколькими тысячами клеток в ячейке, а реальные органы имеют сложное, дифференцированное строение с тканями, непредсказуемо взаимодействующими друг с другом. Наиболее сложна для эксперимента эндокринная система, в которой сотни разных гормонов нацелены на сотни различных мишеней по всему организму.
Ученые «БиоКлиникума» идут по пути совмещения живого с неживым: новая версия чипа, пока находящаяся в разработке, имеет полупроницаемые каналы, по которым циркулирует воздух, — аналог человеческих легких. Кишечник нового маленького человечка будет иметь изгибы, похожие на изгибы реального прототипа, и клетки будут расположены в нужном порядке. В лаборатории уверены в том, что проект будет совершенствоваться до тех пор, пока не удастся смоделировать все системы органов во всем их многообразии.
Этика будущего
Несмотря на то что «человек на чипе» выводит животных и человека из-под удара испытаний лекарств, многие, возможно, задаются вопросом — а не могут ли испытуемые клетки сами испытывать боль, особенно когда речь заходит об экспериментах над нервной системой? К счастью, опасения напрасны, клетки культивируются раздельно и не имеют иннервации. Это лишь комочки живой ткани, объединенные в систему, а не полноценный организм, поэтому говорить о создании искусственной жизни не приходится.
Между тем микробиореактор может не только сократить количество тестов на животных, но и значительно ускорить прогресс как в фармацевтике, так и в медицине. На определенном этапе развития новая технология позволит точно подбирать гормональную терапию и минимизировать риски при подборе лекарств.
«Гомункулус» — полностью российский проект, который получает гранты от Минобрнауки и Минздрава; уже выданы разрешения на испытания новых лекарств, есть и международные контакты. Сейчас «БиоКлиникум» испытывает свои системы в России и Германии, ведь важно доказать правильность работы установки покупателям по всему миру, а не только на отечественном рынке. Когда прибор пройдет все испытания и получит полную сертификацию, его внедрение не заставит себя ждать, и, возможно, совсем скоро мы получим множество спасительных препаратов, созданных благодаря молчаливому «подвигу» множества «человечков» на чипах.
Congratulations @proady! You received a personal award!
You can view your badges on your Steem Board and compare to others on the Steem Ranking
Vote for @Steemitboard as a witness to get one more award and increased upvotes!