Building Your Own Tool to Scrape Public GitHub Repositories

in #web-scraping10 days ago

GitHub hosts over 200 million repositories. That’s a mountain of code and data ripe for exploration. Imagine tapping into that resource, tracking trends, or uncovering hidden gems — all programmatically. Scraping GitHub repositories with Python can give you that edge.
In this post, we’ll guide you through building a scraper from scratch. We’ll use well-known Python libraries, dig into GitHub’s HTML structure, and craft a script you can run today. Ready? Let’s dive in.

Why Scrape Public GitHub Repositories

It’s not just about grabbing code snippets. Scraping GitHub unlocks powerful insights:

  • Track emerging technologies. Watch which repos explode in popularity. Spot frameworks and languages gaining momentum before everyone else.
  • Learn from open source. Analyze top projects to absorb coding techniques, design patterns, and documentation styles.
  • Stay competitive. Monitor forks, stars, and commits to gauge where the industry is headed.

GitHub’s size and reputation make it a goldmine. But to get value, you need to extract the right data efficiently.

The Python Libraries You Should Use

Python’s ecosystem is ideal for scraping:

  • requests: Handles HTTP requests effortlessly.
  • BeautifulSoup: Parses HTML, letting you sift through page elements with precision.
  • Selenium (optional): Automates browsers for dynamic content, clicks, and form inputs.

For most GitHub scraping, requests + BeautifulSoup cover the essentials.

Step 1: Build Your Python Environment

Isolate your project using a virtual environment to keep dependencies clean:

python -m venv github_scraper
source github_scraper/bin/activate  # macOS/Linux
github_scraper\Scripts\activate     # Windows

Step 2: Install Required Libraries

Add BeautifulSoup and requests with a simple command:

pip install beautifulsoup4 requests

Step 3: Pull the GitHub Page

Grab the HTML of your target repository:

import requests

url = "https://github.com/TheKevJames/coveralls-python"
response = requests.get(url)

If response.status_code is 200, you’re set.

Step 4: Parse HTML with BeautifulSoup

Feed the page content into BeautifulSoup:

from bs4 import BeautifulSoup

soup = BeautifulSoup(response.text, 'html.parser')

Now you have a navigable tree of the page’s elements.

Step 5: Understand the Page Structure

Open your browser’s developer tools (F12). GitHub’s HTML isn’t always straightforward — many elements share classes or lack unique identifiers. Your job? Identify reliable selectors for:

  • Repo name
  • Stars
  • Description
  • Latest commit
  • Forks and watchers

Knowing this will streamline data extraction.

Step 6: Extract the Details

Here’s the core extraction logic:

repo_title = soup.select_one('[itemprop="name"]').text.strip()
main_branch = soup.select_one('.ref-selector-button-text-container').text.strip()
latest_commit = soup.select_one('relative-time')['datetime']

bordergrid = soup.select_one('.BorderGrid')
description = bordergrid.select_one('h2').find_next_sibling('p').get_text(strip=True)

stars = bordergrid.select_one('.octicon-star').find_next_sibling('strong').get_text(strip=True).replace(',', '')
watchers = bordergrid.select_one('.octicon-eye').find_next_sibling('strong').get_text(strip=True).replace(',', '')
forks = bordergrid.select_one('.octicon-repo-forked').find_next_sibling('strong').get_text(strip=True).replace(',', '')

Step 7: Obtain the README

The README file often holds essential info. Construct its raw URL dynamically:

readme_url = f'https://raw.githubusercontent.com/TheKevJames/coveralls-python/{main_branch}/README.md'
readme_resp = requests.get(readme_url)

readme = readme_resp.text if readme_resp.status_code == 200 else None

Always check the status code — no one wants a 404 masquerading as content.

Step 8: Organize Your Information

Store everything neatly in a dictionary:

repo_data = {
    'name': repo_title,
    'latest_commit': latest_commit,
    'main_branch': main_branch,
    'description': description,
    'stars': stars,
    'watchers': watchers,
    'forks': forks,
    'readme': readme,
}

Step 9: Save Results as JSON

JSON is perfect for structured data storage and later use:

import json

with open('github_data.json', 'w', encoding='utf-8') as f:
    json.dump(repo_data, f, ensure_ascii=False, indent=4)

Full Script in One Place

Here’s the complete scraper you can run now:

import json
import requests
from bs4 import BeautifulSoup

url = "https://github.com/TheKevJames/coveralls-python"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")

repo_title = soup.select_one('[itemprop="name"]').text.strip()
main_branch = soup.select_one('.ref-selector-button-text-container').text.strip()
latest_commit = soup.select_one('relative-time')['datetime']

bordergrid = soup.select_one('.BorderGrid')
description = bordergrid.select_one('h2').find_next_sibling('p').get_text(strip=True)

stars = bordergrid.select_one('.octicon-star').find_next_sibling('strong').get_text(strip=True).replace(',', '')
watchers = bordergrid.select_one('.octicon-eye').find_next_sibling('strong').get_text(strip=True).replace(',', '')
forks = bordergrid.select_one('.octicon-repo-forked').find_next_sibling('strong').get_text(strip=True).replace(',', '')

readme_url = f'https://raw.githubusercontent.com/TheKevJames/coveralls-python/{main_branch}/README.md'
readme_resp = requests.get(readme_url)
readme = readme_resp.text if readme_resp.status_code == 200 else None

repo_data = {
    'name': repo_title,
    'latest_commit': latest_commit,
    'main_branch': main_branch,
    'description': description,
    'stars': stars,
    'watchers': watchers,
    'forks': forks,
    'readme': readme,
}

with open('github_data.json', 'w', encoding='utf-8') as f:
    json.dump(repo_data, f, ensure_ascii=False, indent=4)

Wrapping Up

Mastering GitHub scraping opens new doors. Whether you’re hunting trends, building analytics dashboards, or mining code for inspiration — Python’s tools and this guide give you a strong foundation.
Remember GitHub’s API often provides cleaner, more reliable access. When scraping, tread carefully — respect rate limits and terms of service. You don’t want to overwhelm their servers.